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Research Statement
Deploying intelligent mobile robots in the real world has been a longstanding goal in robotics and AI. Despite
significant progress in perception, planning, and control, robots today fail to blend seamlessly, safely, and confidently
into human environments (Figure 1).

(a) Driving in chaotic traffic (b) Navigating airports (c) Home robots

Figure 1: My research goal is to develop human-like mobility enabling robots to safely and efficiently navigate these environments.

Each scenario requires robots to jointly make sense of the chaos in the scene, reason about human behavior, and
navigate safely, efficiently, and smoothly. For instance, navigating through airports requires agility to smoothly
maneuver around dense pedestrian clusters, autonomous driving requires handling unknown environments and
unpredictable on-road agents, and home robots have to deal with constrained spaces, pets, and children. Humans, on
the other hand, can navigate these scenarios with ease by jointly understanding the complex scene, reasoning
about the behaviors of other agents, and planning safe, deadlock-free, and agile trajectories, even
taking calculated risks when necessary. My research studies the differences between robot mobility
and human-like mobility, and develops algorithms and systems to bridge this gap.

Figure 2: The three principles that define Human-like Mobility.

⊙ Previous and on-
going work–Towards
understanding complex scenes,
I have proposed new meth-
ods for (i) detection
and tracking of pedestri-
ans and vehicles in dense
and heterogeneous traf-
fic [1, 2], (ii) predicting
their future trajecto-
ries [3, 4, 5], (iii) seman-
tic segmentation in ad-
verse conditions [6, 7]. On-
going work includes (iv)
action recognition from
RGB videos. Next, I have
also developed online, ro-
bust, and general agent
behavior models [8, 9,
10] for characterizing the
aggressiveness or conservativeness of mobility in dense and heterogeneous environments. Finally, I introduced a novel
bi-level optimization navigation framework algorithm for risk-aware navigation [11], dynamic autonomous
intersection control [12, 13], multi-agent pathfinding [14], and social navigation [15, 16]. Lastly, I also
developed simulators [17, 18], tools [4], and datasets [19] towards developing human-like mobility.
⊙ Research Agenda–During the initial years, my lab will conduct research along the following three directions:
(i) Everything Perception for challenging environments–we will develop foundational models for a new framework to-
wards integrated multi-modal, multi-task, and risk-aware reasoning and intent inference, (ii) Deployable
planning and control frameworks for fully decentralized multi-agent navigation with generalizability, liveness,
agility, and safety guarantees, and (iii) autonomous racing in unstructured environments.
⊙ Impact–Featured in science news and media such as TechXplore, my work has also been presented at several
reputed workshops such as the UMD Future Faculty Fellows 2021, RSS Pioneers 2022, Microsoft Future Leader
in Robotics and AI 2023, and KAUST Rising Star in AI 2023. My work also received the 2023 SNU Ph.D. Talk
award, 2022 Charles A. Caramello Distinguished Dissertation finalist award and the UMD 2020 summer research
fellowship. Based on my work, I have also organized three workshops on autonomous driving, multi-robot planning
and interaction, and social navigation at IROS 2022, RSS 2023, and IROS 2023.
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1 Thesis and Postdoc Work: Perception, Behavior Modeling, and
Planning in Multi-agent Environments

1.1 Anticipating Human Motion in Crowded and Chaotic Environments
Human-like mobility enables robots to proactively navigate crowded and chaotic environments around other humans
by anticipating their motion. Towards building a model of human understanding, robots must be able to accurately,
robustly, and in realtime, track humans in these environments, estimate their risk tolerance, and predict their
future motion. Not only are these tasks inherently challenging, but also the difficulty rises in dense and chaotic
environments.
Tracking in Crowded Settings–To estimate risk tolerances of humans and predict their future motion, robots
need to track the humans. In crowded and dynamic environments, however, humans are frequently occluded
and tracks fragment. In DensePeds [1](IROS’19), I design and give a proof of correctness for a tracking-by-
detection algorithm that segments out background noise from an agent’s bounding box, leading to cleaner and more
reliable tracks. Not only did my approach rank 1st on the MOT16 benchmark leaderboard [20] at the time, but it
formally explains the success of Multi-Object Tracking and Segmentation (MOTS [21]), a now well known framework
popularly used in the computer vision community. RoadTrack [2](ICRA’20) extends DensePeds by incorporating
a motion model that simultaneously takes into account collision avoidance and inter-agent interactions to bolster
tracks that are at high risk of fragmenting. My tracking algorithm has been adopted in navigation systems to
deploy robots in crowded indoor building on campus [22, 23].
Motion forecasting in dense and dynamic environments–Forecasting human motion enables robots to effec-
tively plan and navigate in human environments, but motion forecasting is challenging in crowded heterogeneous
scenarios. The high density causes agents to execute highly non-linear trajectories that are non-trivial to predict.
Furthermore, the predictions implicitly depend on the dynamics of an agent, which vary significantly in heteroge-
neous areas. In TraPHic [3](CVPR’19), I develop an algorithm that selectively focuses attention on fewer agents by
training the ego-vehicle to identify the agents that deserve more importance than others. For instance, a pedestrian
in the way of the ego-vehicle requires more attention than, say, a parked car to the side. TraPHic additionally takes
in the explicit shape, size, and dynamics, of vehicles thereby allowing it to generate predictions for the ego-vehicle
that reflect the traffic around it.
Classical deep trajectory forecasting is a supervised learning problem and hence depends on large training datasets
that require time and effort to clean and process. In a follow up work RobustTP [4](ACM CSCS’19), I propose
an end-to-end approach that does not require manually labeled ground-truth trajectories to train the trajectory
prediction network. The input to this algorithm consists only of raw traffic videos obtained from commodity sensors
such as monocular RGB cameras.
1.2 Online Human Risk Estimation in Crowded Environments
Dynamic environments necessitate risk estimation models to be run on data streaming in real time, capable of
adapting to rapid pace of change in the environments, and above all, explainable when probed. The current
paradigm of learning human objectives from data, widely accepted in the robotics community, fails in all three
aspects. My thesis introduces an online, simple, and explainable framework for estimating humans’ risk preferences
that exploits the high density of traffic and crowds. It is robust enough to operate on raw data streamed directly
from a camera or lidar and generalizes to traffic conditions in four countries, India, Singapore, China, and USA,
with unique environments and drivers. Lastly, it requires no assumptions or dependency other than the last few
seconds of a driver’s trajectory. The key insight on which this framework rests is that a motorcyclist does not need
to know the exact risk preference of the trucker next to him, the motorcyclist just has to know whether the trucker’s
appetite for risk is more or less than his own.
The algorithm, called CMetric [8, 10](IROS’20, IEEE ITS’21), observes raw vehicle trajectories and uses tools
from graph theory such as vertex centrality functions to measure the likelihood and intensity of driving styles such
as overspeeding, overtaking, sudden lane-changes, etc. I evaluate CMetric by measuring the time difference between
the moments when a human identifies an aggressive behavior and when CMetric identifies the same behavior.
Our experiments showed that CMetric can identify different behaviors with an average time difference of less than
0.02 seconds. A key step in our graph-theoretic algorithm is to compute the leading eigenvector of the Laplacian
matrix of the traffic graphs, which can be an expensive operation as the number of traffic participants grow in
crowded traffic. In follow up work [9], I recursively exploit sub-matrix information as well as exploit the sparsity
and symmetry of Laplacian matrices to compute inverse Laplacian matrices more efficiently, thereby decreasing the
time (by a factor of 2×) and space complexity of the eigenvalue algorithm.
The CMetric algorithm can be used for trajectory planning [11]. The planner takes into account the wide range
of human driver behaviors on the road, from aggressive maneuvers like speeding and overtaking, to conservative
traits like driving slowly and conforming to the right-most lane. Specifically, the planner learns a mapping from
CMetric’s output to a driver’s entropic risk preference. The planner shows that in a merging scenario, the final
trajectories obtained from the risk-aware planner generate desirable emergent behaviors.
A natural question arose: can we collectively predict low-level information such as trajectories and high-level
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information such as driver behavior from a single neural network? In SpectralLSTM [5](RAL/IROS’20), we
propose a unique two-stream neural network where the first stream employs the TraPHic algorithm while the second
stream in parallel channels the CMetric algorithm to predict the driver’s behavior. This work also introduces a
new regularization technique to stabilize training for trajectory prediction architectures. Lastly, I also derive a
theoretical upper bound on the prediction error of the regularized trajectory predictions.
1.3 Multi-Agent Coordination and Planning in Constrained Spaces
In crowded, dynamic, and chaotic environments, robots’ conservative nature causes them to frequently freeze in
constrained spaces with multiple conflicting agents, which I term as social mini-games, in the interest of safety,
resulting in jerky motion that is far from time-efficient. During my Ph.D. and postdoc, I have designed algorithms
and systems for robots that can be safe, but also be less conservative, so that they can proactively resolve the
freezing robot problem in social mini-games in a distributed or decentralized manner relying only on local sensor
information.
Multi-agent coordination in social mini-games–One of the common causes for the freezing robot problem
is when multiple agents end up in conflict in constrained, but crowded, environments e.g. multiple vehicles ar-
riving at a four-way, unsignaled intersection at approximately the same time. Resolving such conflicts is hard
because of inherent symmetry in the environment and that every robot wants to “win” the conflict. In Game-
Plan [12](RAL/ICRA’22), I introduce a new class of auctions that efficiently determine a fair ordering based on
the priorities of each agent, which is determined using the CMetric algorithm. I prove that these auctions not only
optimize each agent’s specific utility but also maximize the global welfare of the system.
Applying coordination strategies to multi-agent planning–In SocialMAPF [14], I show that the auction-
based coordination algorithm can be applied to discrete path planning problems. Specifically, I extend the multi-
agent path finding (MAPF) problem for non-cooperative agents. Approaches for MAPF with non-cooperative agents
are either optimal or efficient, but not both. I propose the first optimal and efficient solver for strategic agents. In
GameOpt [13], I apply auction-based coordination in the continuous space domain towards cooperative intersec-
tion control for dynamic, multi-lane, unsignalized intersections. My approach combines an auction mechanism to
generate a priority entrance sequence for every agent, with an optimization-based trajectory planner satisfying the
priority sequence. This coupling operates at real-time speeds of less than 10 milliseconds in high density traffic of
more than 10, 000 vehicles/hr, 100× faster than other fully optimization-based methods, while providing guarantees
in terms of fairness, safety, and efficiency. Tested on the SUMO simulator, my algorithm improves throughput
by at least 25%, time taken to reach the goal by 75%, and fuel consumption by 33% compared to auction-based
approaches and signaled approaches using traffic-lights and stop signs.
The auction framework indicated that game theory was the right tool to resolve deadlocks in social mini-games,
but it still required a central auction master. In ongoing work [15, 16], I introduce a new class of decentralized
controllers that ensure both safety and liveness by attaining a game-theoretic Nash equilibrium. I show that these
controllers can be generally tacked on to any constrained optimization-based local trajectory planner such as model
predictive control or dynamic window approach, by simply adding our controller as an additional constraint. My
approach to ensuring liveness rests on two novel insights: (i) there exists a mixed-strategy Nash equilibrium that
allows decentralized robots to perturb their state onto liveness sets i.e. states where robots are deadlock-free and
(ii) forward invariance of liveness sets can be achieved identical to how control barrier functions (CBFs) guarantee
forward invariance of safety sets. We successfully deploy1 the proposed algorithm in the real human environments
using F1/10 robots, a Clearpath Jackal, and a Boston Dynamics Spot as well as in simulated social mini-games.
We show that (i) classical navigation performs far better than learning-based algorithms for multi-agent social
robot navigation in terms of success rate, (ii) a controller obeying game-theoretic safety certificates is necessary
for decentralized multi-robot social navigation, (iii) our approach is more socially compliant, that is, results in the
fewest changes in velocities by up to 5× and yields a flow rate of 2.0− 2.1 (ms)−1 which is comparable to flow rate
in human navigation at 2.0 (ms)−1.
1.4 Tools and Resources
During my PhD, I released a software framework, TrackNPred [4] that benchmarks state-of-the-art tracking and
trajectory prediction methods on real-world dense traffic datasets. I also introduced the METEOR dataset [19] a
new traffic dataset of Indian traffic videos focusing on rare and interesting multi-agent driving behaviors, categorized
into traffic violations, atypical interactions, and diverse scenarios. Finally, I present a new reinforcement learning
simulation environment [17] by enriching existing traffic simulators with behavior-rich trajectories corresponding to
varying levels of aggressiveness using CMetric.
In my postdoc, I developed SocialGym 2.0 [18], a simulator for multi-agent navigation research. Our simulator
enables navigation for multiple autonomous agents, replicating real-world dynamics in complex indoor environments,
including doorways, hallways, intersections, and roundabouts. Unlike current simulators that concentrate on single
robots in open spaces, SocialGym 2.0 employs multi-agent reinforcement learning (MARL) to develop optimal
navigation policies for multiple robots with diverse, dynamic constraints in complex environments.

1Watch video summary at https://youtu.be/fA7BbM8iTwg.
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2 Research Agenda: Analyzing complex environments, Language-guided
reasoning, and Integrated perception and control

2.1 Understanding Complex Environments
Foundational perception models for complex environments–While current perception algorithms demon-
strate impressive performance in controlled or sparse settings, they often falter when faced with the complexities
of real-world environments, which include diverse terrains, fluctuating weather conditions, and an intricate mix of
dynamic and static obstacles. Given this, much active research has focused on enhancing individual perception
tasks for these challenging contexts. My research direction, however, aims to break new ground by developing
foundational models for an innovative framework called Everything Perception. This framework seeks to integrate
multiple perception tasks, thereby facilitating robust multi-task perception in complex and unpredictable environ-
ments. As illustrated in my prior work [1], a strategically combined, albeit manually configured, approach of object
detection and instance segmentation yielded superior tracking performance in dense traffic conditions. By further
advancing these foundational models for Everything Perception, we aim to create a unified, adaptive algorithmic
approach capable of navigating the multi-layered complexities of real-world settings.
LLM-driven introspective agents–In unfamiliar or dynamically changing environments, safety is contingent on
a robot’s ability to continuously monitor various factors such as weather conditions, time of day, terrain type, and
nearby obstacles. Traditional methods often require manual intervention to correct failures, presenting a bottleneck
in scalability and real-time adaptability. One promising approach to overcome this limitation is the concept of
“introspective perception” [24] which enables robots to autonomously account for uncertainties in their environment.
My research aims to leverage Large Language Models (LLMs) in developing advanced agents capable of introspective
perception. Specifically, I am interested in investigating whether LLMs can be employed to create agents that
autonomously quantify environmental uncertainties. The ultimate goal is to develop a systematic, multi-step
algorithm where the introspective agent first evaluates static environmental elements, such as the terrain, followed
by dynamic variables, like moving obstacles. Each step would involve a quantitative assessment of uncertainty,
which can be aggregated to form a comprehensive safety index for robotic navigation.
2.2 Inferring and communicating intent
Representing human intent as a language–In India, drivers honk, not only to signal emergencies, but also
to communicate intent, request coordination, assert dominance, convey frustration, among many other reasons. In
short, honking is used as a means of communication during driving. Similarly, pedestrians often communicate intent
via gaze or body language. In light of the progress in natural language understanding driven by large language
models (LLMs), I am excited to investigate leveraging language as a means to directly represent these social cues.
Although work has been done to study social cues such as gaze, body language, vehicle honking, and so on, my
intuition is that these cues can be cast in the form of a language. I will use the expressive power of vision language
models, built on top of LLMs, to build a language representation of social cues in order to learn humans’ risk
tolerances simply from realtime camera input without the need for lower level computer vision. I will also use LLMs
as a means to study and analyze the impact of different cultural norms on behavior.
2.3 Integrated learning, perception, and control for human-like mobility
Human-like mobility constitutes many moving parts including perception, coordination, planning, and control. So
far, I have established principles of human-like mobility in each of these separately. But for deployment in chaotic
multi-agent environments, it is necessary to have a single seamless end-to-end systems.
A G.L.A.S half full approach to multi-agent navigation––G.L.A.S half full represents multi-agent navigation
with Generalizability, Liveness, Agility, and Safety guarantees in a fully decentralized setting. This approach
mirrors the intricate choreography of human movement, capturing its essence in algorithmic form. At the heart
of this paradigm lies a sophisticated blend of reinforcement learning and transfer learning techniques, empowering
agents to adapt effortlessly to a kaleidoscope of environments. To maintain the decentralized nature and liveness
of the system, I integrate cutting-edge communication, coordination, and deadlock resolution strategies. I will
employ barrier functions to create an impenetrable shield against collisions and other hazards. Agility is achieved
through optimal control algorithms, enabling high-speed navigation that dynamically responds to ever-changing
conditions. What sets this paradigm apart is its interdisciplinary approach. Achieving these objectives necessitates
an intellectual deep dive through adjacent domains, including machine learning, game theory, optimization, and
control theory. The resulting algorithms are not mere patchworks but elegant systems that weave elements from
each domain into a unified whole, fulfilling all objectives.
Towards stable deep neural multi-agent control–Multi-agent reinforcement learning (MARL) is a promising
approach for decentralized planning and control in multi-agent settings. It also serves as a viable candidate as
a building block for multi-agent planning and control in a potential end-to-end model for human-like mobility.
However, MARL-based navigation policies have been used in a very limited sense due to the inherent instability in
training them. Recently, in [25], we discovered that incorporating human intent into the training scheme stabilized
training of decentralized MARL approaches achieving SOTA performance in autonomous driving in heterogeneous
traffic. I am most exited to continue this line of research and leverage human intent and risk preferences to build
new stable MARL algorithms for decentralized multi-agent navigation.
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